The age of the Milky Way is determined by measuring the amount of beryllium present in some of the oldest known stars in the Milky Way. Hydrogen, helium and lithium were all present right after the Big Bang, while heavier elements are produced in the interiors of stars and dispersed via supernovae. Beryllium-9, however, is produced by collisions of cosmic rays with heavier elements.
Since beryllium is formed in this way, and not in supernovae, it can act as a “cosmic clock” of sorts. The longer the duration between the first stars that created heavier elements and the stars that make up globular clusters in the early Milky Way, the more beryllium there should be from the exposure to galactic cosmic rays. By measuring the beryllium content of the oldest stars in the Milky Way, the age of the Milky Way can be approximated.
This method is kind of like using radioactive decay of carbon-14 on Earth to determine the age of fossils. Radioactive decay of uranium-238 and thorium-232 gives an age of the Milky Way as similar to that of measuring the abundance of beryllium.
The age of the Milky Way is a tricky question to answer, though, because we can say that the oldest stars are 13.4 billion years old but the galaxy as we know it today still had to form out of globular clusters and dwarf elliptical galaxies in an elegant gravitational dance. If you want to define the age of the Milky Way as the formation of the galactic disk, our galaxy would be much younger. The galactic disk is not thought to have formed until about 10 – 12 billion years ago.
Source: ESO News Release
No comments:
Post a Comment